Mass spectrometry in glycomics research: **Application to IgA nephropathy** Part I Jan Novak, Ph.D. and Matthew B. Renfrow, Ph.D. In: Proteomics and mass spectrometry 2009 March 13, 2009 IgA Nephropathy The most common primary glomerulonephritis in the world Hematuria and proteinuria - episodic gross hematuria x mucosal (upper respiratory tract) infections - viruses, bacteria · Afflicts preferentially children and young adults • Male to female ratio is about 2:1 · Sporadic or familial (hereditary) forms · Henoch-Schönlein purpura -may include renal involvement - nephritis (similar to IgAN; in young children) IgA nephropathy Immune complex glomerulonephritis Diagnosis of glomerulonephritis - one of the following: History of macroscopic hematuria Microscopic hematuria: >5 RBC/high-power field Proteinuria: dipstick ≥1+ or UP/Cr ratio ≥0.2 In the absence of menstrual bleeding, known urologic source or nephrolithiasis

Prognosis

- Usually slow progression towards glomerular and interstitial sclerosis (no disease-specific treatment of IgAN)
- 30-40% patients develop end-stage renal disease within 20 years
- · Dialysis, transplantation
- IgN cause is extrarenal:
 - IgAN recurrent >50% after transplantation
 - IgAN kidney transplanted to non-IgAN recipient cleared IC

Circulating Immune Complexes (CIC) in IgA nephropathy

- IgA1-containing CIC present in most IgAN patients
- IgA1-CIC levels correlate with the disease activity

IgA1 deposits originate from CIC

Immune complex glomerulonephritis (GN)

Initial events in immune deposit formation:

- deposition of CIC
 pre-formation of CIC
 only certain complexes are "nephritogenic"
 host factors promoting glomerular IC deposition reduced clearance or complement-mediated solubilization
 in-situ formation
- - Ab recognize glomerular antigens Ab bind to planted Ag (models vs. naturally-occurring diseases)

Secondary events:

formation of aggregates detectable by IF and EM
 (redistribution of IC; addition of Ab, IC, other reactants)

Localization of glycan-dependent antigenic determinants of Gal-deficient IgA1

- Gal-deficient IgA1 is present in sera in IgG-IgA1 immune complexes (IC)
- Free and IC-bound IgG and IgA1 anti-IgA1 antibodies are specific for the hinge region O-linked glycans

(cross-reactive antibodies specific for mucosal pathogens or viruses?)

The antigenic determinant(s) comprises GalNAc and/or GalNAc -lpha2,6 SA glycans

In vitro model to study IgA1-CIC biological activity

- IgA1-CIC fractionated -> added to cultured MC
 - -> Binding, proliferation, activation markers,...
 - Proteomics (ID proteins up- or down-regulated or with altered post-translational modifications)
 - High-density DNA arrays (ID genes up- or down-regulated)

IgA1 binding to mesangial cells in vitro

- Putative receptor (R) binds the Fc portion of IgA1
- · Asialo-agalacto-lgA1 > normally glycosylated lgA1
- CIC from IgAN patients >>>> asialo-agalacto-lgA1
- CIC from IgAN patients >> CIC from healthy controls
- Binding of CIC inhibited by IgA1 but not by IgG
- Fc α R (CD71, Fc α/μ possible candidates but <u>not</u> CD89)

Novak et al., Kidney Int. 200

In-vitro assay of biological activity of CIC: proliferation of MC

CIC from serum fractionated by size-exclusion chromatography (Superose 6 column; calibrated)

Collect CIC V₀ ~ ~700 kDa

Filter-sterilize and add to quiescent MC Incubate for 20 h

Add ³H-thymidine for 4 h

Harvest, measure ³H-thymidine incorporation

Additional experiments: depletion of IgA, IgG supplementation of IgA

Controls: PDGF, negative control (no CIC)

PCNA -

PCNA +

Novak Kl. 2005

			1400.4	PROFIN
	IL-6	IL-8	MCP-1	PDGF BF
Control (No CIC added)	+	±	+	+
Large CIC (800-900 kDa)	Î	ft	f	f
Small CIC (<800 kDa)	#	11 11		f

Hypothesis for pathogenesis of IgAN	
Formation of IgA1-CIC	
Gal-deficient IgA1 bound by enti-glycan Ab (IgG, IgA1) Mesangial deposition	
Activation of MC (Proliferation, ECM expansion)	
IgAN is an autoimmune disease Antigen - galactose-deficient <i>O</i> -glycan-containing plgA1	
possibly induced by mucosal pathogens or their products Antibody - glycan-specific IgG, IgA1	
possibly induced by mucosal pathogens bearing <i>O</i> -glycans (viruses, bacteria) Ratio of Ag:Ab determines <u>size</u> (and thus <u>biological activity</u>) (Serum sickness may be a prototype of this kind of IC-disease)	
Mesangial cells have IgA receptor(s) bind IgA1-CIC with high affinity	
-> differential cellular activation by IgA1-CIC of different sizes	
lgA nephropathy: a disease of abnormal post-translational	
modification? • Abnormal O-glycosylation of IgA1 as etiopathogenic factor in IgAN (Mestecky 1993)	
Gal-deficient IgA1 complexed in CIC with anti-glycan IgG/IgA1 (Tomana 1997, 1999)	
Gal-deficient IgA1 in mesangial deposits (Allen 2001, Hiki 2001)	
What is the <u>heterogeneity of O-glycosylation</u> of IgA1, and what are the <u>sites of O-glycan attachment?</u>	
Does Gal deficiency in IgAN occur <u>randomly or preferentially</u> at <u>specific sites</u> ?	

Methods

- Naturally Gal-deficient plgA1 myeloma protein mimicking lgA1 from lgAN patients (Tomana 1999) analyzed after enzymatic removal of sialic acid
- Isolated trypsin-pepsin-thermolysin fragments
- IgA1 protease-generated fragments (single and double digests: Fc and Fd or released hinge region)
- Analyses: Gas-liquid chromatography
 Mass spectrometry
 Western blots with lectins

	Analysis of glycan attachment sites by mass spectrometry
Example	of hinge variant with one glycan:
	-Val-Pro-Ser-Thr-Pro-Pro-Thr-Pro-Ser-Pro-Ser-Thr-Pro-Pro-Thr-Pro
	??
? C	One specific site of attachment or mixture of variants?
	<u>↓</u>
Fou	urier transform-ion cyclotron resonance (FT-ICR) mass spectrometry
	Fragmentation of peptide lectron capture dissociation (ECD) lectron transfer dissociation (ETD)
la.	Fragmentation of glycosidic bond
In	frared multiphoton dissociation (IRMPD)